Current Issue : January-March Volume : 2022 Issue Number : 1 Articles : 5 Articles
Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that helps to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services is depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Naïve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students’ records to predict degree completion time....
Image segmentation is an important part of image processing. For the disadvantages of image segmentation under multiple thresholds such as long time and poor quality, an improved cuckoo search (ICS) is proposed for multithreshold image segmentation strategy. Firstly, the image segmentation model based on the maximum entropy threshold is described, and secondly, the cuckoo algorithm is improved by using chaotic initialization population to improve the diversity of solutions, optimizing the step size factor to improve the possibility of obtaining the optimal solution, and using probability to reduce the complexity of the algorithm; finally, the maximum entropy threshold function in image segmentation is used as the individual fitness function of the cuckoo search algorithm for solving. ,e simulation experiments show that the algorithm has a good segmentation effect under four different thresholding conditions....
Aging increases the internal resistance of a battery and reduces its capacity; therefore, energy storage systems (ESSs) require a battery management system (BMS) algorithm that can manage the state of the battery. This paper proposes a battery efficiency calculation formula to manage the battery state. The proposed battery efficiency calculation formula uses the charging time, charging current, and battery capacity. An algorithm that can accurately determine the battery state is proposed by applying the proposed state of charge (SoC) and state of health (SoH) calculations. To reduce the initial error of the Coulomb counting method (CCM), the SoC can be calculated accurately by applying the battery efficiency to the open circuit voltage (OCV). During the charging and discharging process, the internal resistance of a battery increase and the constant current (CC) charging time decrease. The SoH can be predicted from the CC charging time of the battery and the battery efficiency, as proposed in this paper. Furthermore, a safe system is implemented during charging and discharging by applying a fault diagnosis algorithm to reduce the battery efficiency. The validity of the proposed BMS algorithm is demonstrated by applying it in a 3-kW ESS....
'e aim was to explore the application value of computed tomography (CT) perfusion (CTP) imaging based on the iterative model reconstruction (IMR) in the diagnosis of acute cerebral infarction (ACI). 80 patients with ACI, admitted to hospital, were selected as the research objects and divided randomly into a routine treatment group (group A) and a low-dose group (group B) (each group with 40 patients). Patients in group A were scanned at 80 kV–150 mAs, and the traditional filtered back projection (FBP) algorithm was employed to reconstruct the images; besides, 80 kV–30 mAs was adopted to scan the patients in group B, and the images were reconstructed by IMR1, IMR2, IMR3, iDose4 (a kind of hybrid iterative reconstruction technology), and FBP, respectively. 'e application values of different algorithms were evaluated by CTP based on the collected CTP images of patients and detecting indicators. 'e results showed that the gray and white matter CT value, SD value, SNR, CNR, and subjective image scores of patients in group B were basically consistent with those of group A (p > 0.05) after the IMR1 reconstruction, and the CT and SD of gray and white matter in patients from group B reduced steeply (p < 0.05), while SNR and CNR increased dramatically after IMR2 and IMR3 reconstruction in contrast to group A (p < 0.05). Furthermore, the cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) of contrast agent, and time to peak (TTP) of contrast agent in patients from group B after iDose4 and IMR reconstruction were basically the same as those of group A (p > 0.05). 'erefore, IMR combined with lowdose CTP could obtain high-quality CTP images of the brain with stable perfusion indicators and low radiation dose, which could be clinically applied in the diagnosis of ACI....
The determination of a ship’s safe trajectory in collision situations at sea is one of the basic functions in autonomous navigation of ships. While planning a collision avoiding manoeuvre in open waters, the navigator has to take into account the ships manoeuvrability and hydrometeorological conditions. To this end, the ship’s state vector is predicted—position coordinates, speed, heading, and other movement parameters—at fixed time intervals for different steering scenarios. One possible way to solve this problem is a method using the interpolation of the ship’s state vector based on the data from measurements conducted during the sea trials of the ship. This article presents the interpolating function within any convex quadrilateral with the nodes being its vertices. The proposed function interpolates the parameters of the ship’s state vector for the specified point of a plane, where the values in the interpolation nodes are data obtained from measurements performed during a series of turning circle tests, conducted for different starting conditions and various rudder settings. The proposed method of interpolation was used in the process of determining the anti‐collision manoeuvre trajectory. The mechanism is based on the principles of a modified Dijkstra algorithm, in which the graph takes the form of a regular network of points. The transition between the graph vertices depends on the safe passing level of other objects and the degree of departure from the planned route. The determined shortest path between the starting vertex and the target vertex is the optimal solution for the discrete space of solutions. The algorithm for determining the trajectory of the anti‐collision manoeuvre was implemented in autonomous sea‐going vessel technology. This article presents the results of laboratory tests and tests conducted under quasi‐real conditions using physical ship models. The experiments confirmed the effective operation of the developed algorithm of the determination of the anticollision manoeuvre trajectory in the technological framework of autonomous ship navigation....
Loading....